On Certain Extrapolation Methods for the Numerical Solution of Integro-Differential Equations*

By S. H. Chang

Abstract

Asymptotic error expansions have been obtained for certain numerical methods for linear Volterra integro-differential equations. These results permit the application of extrapolation procedures. Computational examples are presented.

1. Introduction. Consider the linear Volterra integro-differential equation

$$
\begin{gather*}
y^{\prime}(x)=a(x)+b(x) y(x)+\int_{x_{0}}^{x} k(x, s) y(s) d s, \tag{1}\\
y\left(x_{0}\right)=y_{0}, \quad x_{0} \leqslant x \leqslant L,
\end{gather*}
$$

where $a(x), b(x)$, and $k(x, s)$ are given continuous functions for $x_{0} \leqslant x, s \leqslant L$, and y_{0} is a given real number. Numerical solutions of more general Volterra integro-differential equations have been investigated by many authors. Methods that use finite difference and quadrature techniques have been studied by, for example, Brunner and Lambert [1], Day [2], Feldstein and Sopka [3], Goldfine [4], Linz [6], Makroglou [8], McKee [9], Mocarsky [10], Wolfe and Phillips [11]. Feldstein and Sopka [3] have also discussed asymptotic error expansion and extrapolation for their Taylor algorithms for integro-differential equations.

It is the purpose of this paper to study the asymptotic expansions for the errors associated with certain simple numerical methods. Such a study will permit the application of extrapolation procedures. As a consequence, high order of accuracy in the numerical solution of (1) can be obtained with only a modest amount of work. This will then be demonstrated by computational examples. Our work is inspired by Linz [7] in which the extrapolation, based on a simple numerical method for linear Volterra integro-differential equations of the first kind, is very effective.

In the subsequent discussion, y_{n} will denote an approximate value of $y\left(x_{n}\right)$, where $x_{n}=x_{0}+n h, n=1,2, \ldots, N$, and $h=\left(L-x_{0}\right) / N$. For the known functions $a(x), b(x)$, and $k(x, s), a_{i}, b_{l}$, and $k_{i, j}$ will denote $a\left(x_{0}+i h\right), b\left(x_{0}+i h\right)$, and $k\left(x_{0}+i h, x_{0}+j h\right)$.

[^0]2. The Algorithms and Asymptotic Error Expansions. Integrating (1) from x_{n-1} to x_{n}, we have
(2) $y\left(x_{n}\right)=y\left(x_{n-1}\right)+\int_{x_{n-1}}^{x_{n}}[a(t)+b(t) y(t)] d t+\int_{x_{n-1}}^{x_{n}} \int_{x_{0}}^{t} k(t, s) y(s) d s d t$.

Replacing the integrals from x_{n-1} to x_{n} by the two-step Adams-Moulton rule

$$
\begin{equation*}
\int_{x_{n-1}}^{x_{n}} \phi(x) d x=\frac{h}{12}\left[5 \phi\left(x_{n}\right)+8 \phi\left(x_{n-1}\right)-\phi\left(x_{n-2}\right)\right]-\frac{h^{4}}{24} \phi^{\prime \prime \prime}(\xi) \tag{3}
\end{equation*}
$$

and replacing the remaining inner integral by the Euler-Maclaurin formula (see Hildebrand [5, p. 202])

$$
\begin{align*}
\int_{x_{0}}^{x_{r}} \phi(x) d x= & h\left[\frac{1}{2} \phi\left(x_{0}\right)+\phi\left(x_{1}\right)+\cdots+\phi\left(x_{r-1}\right)+\frac{1}{2} \phi\left(x_{r}\right)\right] \tag{4}\\
& -\frac{h^{2}}{12}\left[\phi^{\prime}\left(x_{r}\right)-\phi^{\prime}\left(x_{0}\right)\right]+O\left(h^{4}\right)
\end{align*}
$$

we obtain from (2) that

$$
\begin{array}{r}
y\left(x_{n}\right)=y\left(x_{n-1}\right)+\frac{h}{12}\left[5\left(a\left(x_{n}\right)+b\left(x_{n}\right) y\left(x_{n}\right)\right)\right. \\
+8\left(a\left(x_{n-1}\right)+b\left(x_{n-1}\right) y\left(x_{n-1}\right)\right) \\
\\
\left.\quad-\left(a\left(x_{n-2}\right)+b\left(x_{n-2}\right) y\left(x_{n-2}\right)\right)\right] \\
+\frac{h^{2}}{12}\left\{5\left[\frac{1}{2} k\left(x_{n}, x_{0}\right) y\left(x_{0}\right)+\sum_{i=1}^{n-1} k\left(x_{n}, x_{i}\right) y\left(x_{i}\right)+\frac{1}{2} k\left(x_{n}, x_{n}\right) y\left(x_{n}\right)\right]\right. \\
+8\left[\frac{1}{2} k\left(x_{n-1}, x_{0}\right) y\left(x_{0}\right)+\sum_{i=1}^{n-2} k\left(x_{n-1}, x_{i}\right) y\left(x_{i}\right)\right. \tag{5}\\
\left.+\frac{1}{2} k\left(x_{n-1}, x_{n-1}\right) y\left(x_{n-1}\right)\right]
\end{array} \quad \begin{array}{r}
\quad-\left[\frac{1}{2} k\left(x_{n-2}, x_{0}\right) y\left(x_{0}\right)+\sum_{i=1}^{n-3} k\left(x_{n-2}, x_{i}\right) y\left(x_{i}\right)\right.
\end{array}
$$

$$
+Q_{n}
$$

where

$$
\begin{aligned}
Q_{n}=-\frac{h^{3}}{144}\left\{5\left[\frac{\partial}{\partial s}\left(k\left(x_{n}, s\right) y(s)\right)\right]_{x_{0}}^{x_{n}}+\right. & 8\left[\frac{\partial}{\partial s}\left(k\left(x_{n-1}, s\right) y(s)\right)\right]_{x_{0}}^{x_{n-1}} \\
& \left.-\left[\frac{\partial}{\partial s}\left(k\left(x_{n-2}, s\right) y(s)\right)\right]_{x_{0}}^{x_{n-2}}\right\}+O\left(h^{4}\right),
\end{aligned}
$$

or, using (3) again,

$$
\begin{equation*}
Q_{n}=-\frac{h^{2}}{12} \int_{x_{n-1}}^{x_{n}} f(x) d x+O\left(h^{4}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
f(x)=\left[\frac{\partial}{\partial s}(k(x, s) y(s))\right]_{x_{0}}^{x} \tag{7}
\end{equation*}
$$

if the function $f(x)$ is C^{3} in $\left[x_{0}, L\right]$.
From (5) we have the following algorithm.
Algorithm A.
Get starting values: y_{0}, y_{1}.
Compute y_{n}, for $n=2,3, \ldots, N$, according to

$$
\begin{align*}
& y_{n}= y_{n-1}+\frac{h}{12}\left[5\left(a_{n}+b_{n} y_{n}\right)+8\left(a_{n-1}+b_{n-1} y_{n-1}\right)-\left(a_{n-2}+b_{n-2} y_{n-2}\right)\right] \\
&+\frac{h^{2}}{12}\left[5\left(\frac{1}{2} k_{n, 0} y_{0}+\sum_{i=1}^{n-1} k_{n, i} y_{t}+\frac{1}{2} k_{n, n} y_{n}\right)\right. \tag{8}\\
&+8\left(\frac{1}{2} k_{n-1,0} y_{0}+\sum_{i=1}^{n-2} k_{n-1, i} y_{i}+\frac{1}{2} k_{n-1, n-1} y_{n-1}\right) \\
&\left.-\left(\frac{1}{2} k_{n-2,0} y_{0}+\sum_{i=1}^{n-3} k_{n-2,1} y_{i}+\frac{1}{2} k_{n-2, n-2} y_{n-2}\right)\right]
\end{align*}
$$

Now, let $e(x)$ be the solution of

$$
\begin{equation*}
e^{\prime}(x)=b(x) e(x)+\int_{x_{0}}^{x} k(x, s) e(s) d s-\frac{1}{12} f(x), \quad e\left(x_{0}\right)=0 \tag{9}
\end{equation*}
$$

where $f(x)$ is given by (7). Using the same approach as before and with appropriate assumption on smoothness, we have

$$
\begin{align*}
e\left(x_{n}\right)= & e\left(x_{n-1}\right) \\
& +\frac{h}{12}\left[5 b\left(x_{n}\right) e\left(x_{n}\right)+8 b\left(x_{n-1}\right) e\left(x_{n-1}\right)-b\left(x_{n-2}\right) e\left(x_{n-2}\right)\right] \\
10) & +8\left[\sum_{i=1}^{n-1} k\left(x_{n}, x_{i}\right) e\left(x_{i}\right)+\frac{1}{2} k\left(x_{n}, x_{n}\right) e\left(x_{n}\right)\right] \tag{10}\\
& \quad-\left[\sum_{i=1}^{n-2} k\left(x_{n-1}, x_{i}\right) e\left(x_{i}\right)+\frac{1}{2} k\left(x_{n-1}, x_{n-1}\right) e\left(x_{n-1}\right)\right] \\
& -\frac{1}{12} \int_{x_{n-1}}^{x_{n}} f(x) d x+O\left(h^{3}\right) .
\end{align*}
$$

Let $\rho_{n}=y\left(x_{n}\right)-y_{n}-h^{2} e\left(x_{n}\right), n=0,1, \ldots, N$. We see from (5), (8), and (10) that ρ_{n} satisfies the following equation.

$$
\begin{align*}
\rho_{n}= & \rho_{n-1}+\frac{h}{12}\left(5 b_{n} \rho_{n}+8 b_{n-1} \rho_{n-1}-b_{n-2} \rho_{n-2}\right) \\
+\frac{h^{2}}{12}\left[5\left(\sum_{i=1}^{n-1} k_{n, i} \rho_{i}+\frac{1}{2} k_{n, n} \rho_{n}\right)\right. & +8\left(\sum_{i=1}^{n-2} k_{n-1, i} \rho_{i}+\frac{1}{2} k_{n-1, n-1} \rho_{n-1}\right) \tag{11}\\
& \left.-\left(\sum_{i=1}^{n-3} k_{n-2, l} \rho_{i}+\frac{1}{2} k_{n-2, n-2} \rho_{n-2}\right)\right] \\
& +O\left(h^{4}\right), \quad n \geqslant 2 .
\end{align*}
$$

By assumption on initial conditions, $\rho_{0}=0$. Suppose we choose the starting value y_{1} so that

$$
y\left(x_{1}\right)-y_{1}=O\left(h^{4}\right)
$$

Furthermore,

$$
\begin{align*}
e\left(x_{1}\right) & =e\left(x_{0}\right)+e^{\prime}\left(x_{0}\right) h+\frac{1}{2} e^{\prime \prime}\left(x_{0}\right) h^{2}+\ldots \tag{12}\\
& =\frac{1}{2} e^{\prime \prime}\left(x_{0}\right) h^{2}+\ldots
\end{align*}
$$

since $e\left(x_{0}\right)=e^{\prime}\left(x_{0}\right)=0$ by (9). Then we have

$$
\begin{equation*}
\rho_{1}=y\left(x_{1}\right)-y_{1}-h^{2} e\left(x_{1}\right)=O\left(h^{4}\right) . \tag{13}
\end{equation*}
$$

Then, it is clear that (11) implies $\rho_{n}=O\left(h^{4}\right)$, for $n \geqslant 2$.
We have thus proved the following theorem.
Theorem 1. Assume that $a(x)$ and $b(x)$ are C^{3}, and $k(x, s)$ is $C^{3,4}$, for $x_{0} \leqslant x$, $s \leqslant L$. Then the approximations $y_{n}, n \geqslant 2$, computed from Algorithm A with $O\left(h^{4}\right)$ starting values, satisfy the relation

$$
y\left(x_{n}\right)=y_{n}+h^{2} e\left(x_{n}\right)+O\left(h^{4}\right)
$$

Now, the extrapolation procedure can be used. Let $Y(x, h)$ denote the approximate solution at x with step-size h. Then, by Theorem 1, we have

$$
y(x)=Y(x, h)+h^{2} e(x)+O\left(h^{4}\right)
$$

We then obtain immediately that

$$
y(x)=\frac{1}{3}\left(4 Y\left(x, \frac{h}{2}\right)-Y(x, h)\right)+O\left(h^{4}\right)
$$

Thus a better approximate value at x is obtained with fourth order accuracy.
Now, instead of (3), let us use the three-step Adams-Moulton rule

$$
\begin{align*}
\int_{x_{n-1}}^{x_{n}} \phi(x) d x= & \frac{h}{24}\left[9 \phi\left(x_{n}\right)+19 \phi\left(x_{n-1}\right)-5 \phi\left(x_{n-2}\right)+\phi\left(x_{n-3}\right)\right] \tag{14}\\
& -\frac{19 h^{5}}{720} \phi^{(4)}(\xi),
\end{align*}
$$

together with the Euler-Maclaurin formula (4), in Eq. (2). This leads to the following algorithm.

Algorithm B.

Get starting values: y_{0}, y_{1}, y_{2}.
Compute y_{n}, for $n=3,4, \ldots, N$, according to

$$
\begin{align*}
& y_{n}=y_{n-1}+ \frac{h}{24}\left[9\left(a_{n}+b_{n} y_{n}\right)+19\left(a_{n-1}+b_{n-1} y_{n-1}\right)\right. \\
&+\frac{h^{2}}{24}\left[9\left(\frac{1}{2} k_{n, 0} y_{0}+\sum_{i=1}^{n-1} k_{n, i} y_{t}+\frac{1}{2} k_{n, n} y_{n}\right)\right. \\
&+19\left(\frac{1}{2} k_{n-1,0} y_{0}+\sum_{i=1}^{n-2} k_{n-1, t} y_{t}+\frac{1}{2} k_{n-1, n-1} y_{n-1}\right) \\
&-5\left(\frac{1}{2} k_{n-2,0} y_{0}+\sum_{t=1}^{n-3} k_{n-2, t} y_{i}+\frac{1}{2} k_{n-2, n-2} y_{n-2}\right) \tag{15}\\
&\left.+\left(\frac{1}{2} k_{n-3,0} y_{0}+\sum_{i=1}^{n-4} k_{n-3, l} y_{i}+\frac{1}{2} k_{n-3, n-3} y_{n-3}\right)\right]
\end{align*}
$$

Again, let $e(x)$ be the solution of (9) and $\rho_{n}=y\left(x_{n}\right)-y_{n}-h^{2} e\left(x_{n}\right), n=$ $0,1, \ldots, N$. This time we find that ρ_{n} satisfies an equation similar to (11) but for $n \geqslant 3$ and with an $O\left(h^{5}\right)$ error term. Using an argument similar to that leading to (13), we obtain easily that $\rho_{1}=\rho_{2}=O\left(h^{4}\right)$. Then this leads again to the asymptotic error expansion

$$
y\left(x_{n}\right)=y_{n}+h^{2} e\left(x_{n}\right)+O\left(h^{4}\right)
$$

Now, from (9) we see that

$$
e^{\prime \prime}\left(x_{0}\right)=-\frac{1}{12} f^{\prime}\left(x_{0}\right)
$$

Suppose that

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=O(h) \tag{16}
\end{equation*}
$$

Then from (12) we will have $e\left(x_{0}+h\right)=O\left(h^{3}\right)$. This in turn will lead to $\rho_{1}=\rho_{2}=$ $O\left(h^{5}\right)$ if we choose $O\left(h^{5}\right)$ starting values. Then the equation on ρ_{n} implies that $\rho_{n}=O\left(h^{5}\right)$, and thus the asymptotic error expansion

$$
y\left(x_{n}\right)=y_{n}+h^{2} e\left(x_{n}\right)+O\left(h^{5}\right)
$$

By differentiating (7) we have

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=k_{s s}\left(x_{0}, x_{0}\right) y\left(x_{0}\right)+2 k_{s}\left(x_{0}, x_{0}\right) y^{\prime}\left(x_{0}\right)+k\left(x_{0}, x_{0}\right) y^{\prime \prime}\left(x_{0}\right) . \tag{17}
\end{equation*}
$$

One sufficient condition for (16) to hold is seen to be

$$
\begin{equation*}
k\left(x_{0}, x_{0}\right)=k_{s}\left(x_{0}, x_{0}\right)=k_{s s}\left(x_{0}, x_{0}\right)=0 \tag{18}
\end{equation*}
$$

Theorem 2. Assume that $a(x)$ and $b(x)$ are C^{4}, and $k(x, s)$ is $C^{4,5}$, for $x_{0} \leqslant x$, $s \leqslant L$. Then the approximations $y_{n}, n \geqslant 3$, computed from Algorithm B with $O\left(h^{4}\right)$ starting values, satisfy the relation

$$
y\left(x_{n}\right)=y_{n}+h^{2} e\left(x_{n}\right)+O\left(h^{4}\right)
$$

If, furthermore, (16) is satisfied, then the values $y_{n}, n \geqslant 3$, computed from Algorithm B with $O\left(h^{5}\right)$ starting values, satisfy the relation

$$
y\left(x_{n}\right)=y_{n}+h^{2} e\left(x_{n}\right)+O\left(h^{5}\right) .
$$

3. Computational Examples.

Example 1.

$$
y^{\prime}(x)=1-\int_{0}^{x} y(s) d s, \quad y(0)=0, \quad 0 \leqslant x \leqslant 1
$$

The exact solution is $y(x)=\sin x$.
Example 2.

$$
\begin{gathered}
y^{\prime}(x)=1+\sin x-y(x)+\int_{0}^{x} \sin (x-s) y(s) d s \\
y(0)=0, \quad 0 \leqslant x \leqslant 1
\end{gathered}
$$

The exact solution is $y(x)=x$.
For Example 1, we see that $f^{\prime}\left(x_{0}\right)=0$ by (17). Both Algorithms A and B, with appropriate starting values, are used in computing the approximate solution. We list in Tables 1, 2, and 3 some of the resulting errors, before and after extrapolation. By error we mean

$$
\text { error }=\mid \text { exact value }- \text { approximate value } \mid .
$$

For Example 2, the approximate solution is computed using only Algorithm A. The resulting errors are listed in Tables 4 and 5. The effect of extrapolation is apparent from these tables.

The programs are written in FORTRAN in double precision for the IBM 370/158 computer at the Cleveland State University.

Table 1
Example 1, Algorithm A

x	$h=0.1$	$h=0.05$	$h=0.025$
0.4	1.13×10^{-5}	2.55×10^{-6}	5.95×10^{-7}
0.6	3.50×10^{-5}	8.06×10^{-6}	1.92×10^{-6}
0.8	7.75×10^{-5}	1.81×10^{-5}	4.35×10^{-6}
1.0	1.42×10^{-4}	3.35×10^{-5}	8.11×10^{-6}

Table 2
Example 1, Algorithm B

x	$h=0.1$	$h=0.05$	$h=0.025$
0.4	8.47×10^{-6}	2.21×10^{-6}	5.49×10^{-7}
0.6	2.92×10^{-5}	7.28×10^{-6}	$.1 .81 \times 10^{-6}$
0.8	6.73×10^{-5}	1.67×10^{-5}	4.17×10^{-6}
1.0	1.26×10^{-4}	3.15×10^{-5}	7.85×10^{-6}

Table 3
Example 1, after extrapolation

Algorithm A			Algorithm B	
x	$h=0.1$	$h=0.05$	$h=0.1$	$h=0.05$
0.4	3.54×10^{-7}	5.72×10^{-8}	1.25×10^{-7}	4.10×10^{-9}
0.6	9.28×10^{-7}	1.33×10^{-7}	4.46×10^{-9}	1.13×10^{-8}
0.8	1.70×10^{-6}	2.32×10^{-7}	1.18×10^{-7}	1.70×10^{-8}
1.0	2.60×10^{-6}	3.46×10^{-7}	2.06×10^{-7}	2.07×10^{-8}

Table 4
Example 2, Algorithm A

x	$h=0.1$	$h=0.05$	$h=0.025$
0.4	1.14×10^{-4}	2.89×10^{-5}	7.27×10^{-6}
0.6	2.42×10^{-4}	6.11×10^{-5}	1.53×10^{-5}
0.8	4.05×10^{-4}	1.02×10^{-4}	2.54×10^{-5}
1.0	5.93×10^{-4}	1.49×10^{-4}	3.72×10^{-5}

Table 5
Example 2, Algorithm A, after extrapolation

x	$h=0.1$	$h=0.05$
0.4	7.42×10^{-7}	4.51×10^{-8}
0.6	6.16×10^{-7}	3.76×10^{-8}
0.8	5.28×10^{-7}	3.25×10^{-8}
1.0	4.78×10^{-7}	2.97×10^{-8}

Department of Mathematics
The Cleveland State University
Cleveland, Ohio 44115

1. H. Brunner \& J. D. Lambert, "Stability of numerical methods for Volterra integro-differential equations," Computing, v. 12, 1974, pp. 75-89.
2. J. T. Day, "Note on the numerical solution of integro-differential equations," Comput. J., v. 9, 1967, pp. 394-395.
3. A. Feldstein \& J. R. Sopka, "Numerical methods for nonlinear Volterra integro-differential equations," SIA M J. Numer. Anal., v. 11, 1974, pp. 826-846.
4. A. Goldfine, "Taylor series methods for the solution of Volterra integral and integro-differential equations," Math. Comp., v. 31, 1977, pp. 691-707.
5. F. B. Hildebrand, Introduction to Numerical Analysis, 2nd ed., McGraw-Hill, New York, 1974.
6. P. Linz, "Linear multistep methods for Volterra integro-differential equations," J. Assoc. Comput. Mach., v. 16, 1969, pp. 295-301.
7. P. Linz, "A simple approximation method for solving Volterra integro-differential equations of the first kind," J. Inst. Math. Appl., v. 14, 1974, pp. 211-215.
8. A. Makroglou, "Convergence of a block-by-block method for nonlinear Volterra integro-differential equations," Math. Comp., v. 35, 1980, pp. 783-796.
9. S. MCKee, "Cyclic multistep methods for solving Volterra integro-differential equations," SIAM J. Numer. Anal., v. 16, 1979, pp. 106-114.
10. W. L. Mocarsky, "Convergence of step-by-step methods for non-linear integro-differential equations," J. Inst. Math. Appl., v. 8, 1971, pp. 235-239.
11. M. A. Wolfe \& G. M. Phillips, "Some methods for the solution of non-singular Volterra integro-differential equations," Comput. J., v. 11, 1968/69, pp. 334-336.

[^0]: Received October 2, 1981.
 1980 Mathematics Subject Classification. Primary 65R20; Secondary 65D30.
 *This research was supported in part by the CSU RACA grants program.

