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On Certain Extrapolation Methods 
for the Numerical Solution of 

Integro-Differential Equations* 

By S. H. Chang 

Abstract. Asymptotic error expansions have been obtained for certain numerical methods for 
linear Volterra integro-differential equations. These results permit the application of extrapo- 
lation procedures. Computational examples are presented. 

1. Introduction. Consider the linear Volterra integro-differential equation 

y'(x) = a(x) + b(x)y(x) + fk(x, s)y(s) ds, 
(1) y(0~0 0 x?L 

Y(X0) =o yO x < x < L, 

where a(x), b(x), and k(x, s) are given continuous functions for x0 < x, s < L, and 
y0 is a given real number. Numerical solutions of more general Volterra integro-dif- 
ferential equations have been investigated by many authors. Methods that use finite 
difference and quadrature techniques have been studied by, for example, Brunner 
and Lambert [1], Day [2], Feldstein and Sopka [3], Goldfine [4], Linz [6], Makroglou 
[8], McKee [9], Mocarsky [101, Wolfe and Phillips [11]. Feldstein and Sopka [3] have 
also discussed asymptotic error expansion and extrapolation for their Taylor algo- 
rithms for integro-differential equations. 

It is the purpose of this paper to study the asymptotic expansions for the errors 
associated with certain simple numerical methods. Such a study will permit the 
application of extrapolation procedures. As a consequence, high order of accuracy in 
the numerical solution of (1) can be obtained with only a modest amount of work. 
This will then be demonstrated by computational examples. Our work is inspired by 
Linz [7] in which the extrapolation, based on a simple numerical method for linear 
Volterra integro-differential equations of the first kind, is very effective. 

In the subsequent discussion, yn will denote an approximate value of y(xv), where 
Xn = xo + nh, n = 1,2,...,N, and h = (L-xo)/N. For the known functions 
a(x), b(x), and k(x, s), al, b1, and ki j will denote a(xO + ih), b(xo + ih), and 
k(xo + ih, xo +jh). 
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2. The Algorithms and Asymptotic Error Expansions. Integrating (1) from xn-I to 
xn5 we have 

(2) y(Xn) = Y(Xn-1) + f [a(t) + b(t)y(t)] dt + 
n 

ftk(t, s)y(s) ds dt. 

Replacing the integrals from xn__ to xn by the two-step Adams-Moulton rule 

(3) f p(x) dx - 12 [5p(Xn) + 8p(Xn-1) - (Xn-2)] - 9 111(0 

Xn-I 

and replacing the remaining inner integral by the Euler-Maclaurin formula (see 
Hildebrand [5, p. 202]) 

f r (x) dx = h[4p(xo) + O(xl) + +?O?(Xri-) + 440(Xr)] 

(4) XO~ ~~h 

- [4' (Xr) - p'(Xo)] + O(h4), 

we obtain from (2) that 

Y(Xn) = Y(Xn- 1) + 
h 

[5(a(Xn) + b(Xn)Y(Xn)) 

+8(a(xn-1) + b(Xn-?)Y(Xn-l) 

-(a(Xn-2) + b(Xn-2)Y(Xn-2))] 

+ 
h 

?5 [ 2 k(xn,xX)y(x,) + 
I 
k(Xnxn)Y(xn)] 

n-2 

+8 [2k(Xn-1 xO)y(xO) + 2 k(Xn_15 Xi)y(Xi) 

(5) 1 

+ 2Ik(Xn_15Xn-1)Y(Xn-J) 

n-3 

2k(Xn-25 XO)Y(X?) + k(Xn25 Xi)y(Xi) 

2 I(Xn-2IXn-2)Y(Xn-2) 2 

+ Q, 1 

where 

Q - = 4 {5[ (k(Xn, s)Y(s))] + 8[ (k(xn 1, s)Y(s))]x' 

[aS (k(Xn-2S)Y(S)) Xn}2 + 0(h4)J 
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or, using (3) again, 

(6) Qn f(x) dx + O(h4) 
Xn-I 

where 

(7) 1(x) = -(k(x, s)y(s))] 

if the functionf(x) is C3 in [x0, L]. 
From (5) we have the following algorithm. 
ALGORITHM A. 
Get starting values: Yo' YI 
Compute yn, for n = 2, 3, ... , N, according to 

Yn Yn ? + -h[5(an + bnYn))+ 8(an-1 + bnyny1) -(an2 bn-2Yn-2)] 
[12 

) + 5 2-kn,Oo + kn,,iy, + -kn,nYn 

+182 2 kn2 oo+2k-I.yi+2k-I,-In 
(8)L = 

?8 ?k-,0Y ~kn-l,y, ? k-,-Y 

- ?kn-2,0YO + ?kn-2,J, + -kn-2,n-2Yn-2 

Now, let e(x) be the solution of 

(9) e'(x) = b(x)e(x) + fk(x, s)e(s) ds - 
I 

f(x ), e(xo) = 0, 
xo~ ~ ~~1 

wheref(x) is given by (7). Using the same approach as before and with appropriate 
assumption on smoothness, we have 

e(xn) e(xn-1) + h2 [5b(xn)e(xn) + 8b(xn-I)e(Xn1)-b(Xn-2)e(Xn-2)] 

+ ? {5[ k(Xn xi)e(xi) + ? k(xnxn)e(xn)j 

+8[ +8 k(Xn ,, xi)e(xi) + ek(Xn-) ? Xn 1)e(Xn1) 

-[2 k( Xn-25 xi ) e(x, ) + - 
k( Xn 25 Xn-2 ) e (Xn2 )] 

_+ fX|n f(x) dx + 0(h 3). 
n-I 
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Let pn = y(x)- - h2e(xn), n = 0, 1,... ,N. We see from (5), (8), and (10) that pn 
satisfies the following equation. 

Pn = Pn-I + 
h 

(5bnPn + 8bn-Pn -l -bn-2Pn-2) 

(11) ? 12 [5(+ kn,iPi + 2knnn kPfn) + 8? in ,iPi 2kn l,n 

+ 0(h4), n ? 2. 

By assumption on initial conditions, po = 0. Suppose we choose the starting value y1 
so that 

y(xl) -y = 0(h4). 

Furthermore, 

(12) e(xl) = e(xo) + e'(xo)h + 4e"(xO)h2 + 

= I 
e"(xo)h2 + .. 

since e(xo) = e'(xo) = 0 by (9). Then we have 

(13) P1 = y(xj) -y - h2e(xj) 0(h4). 

Then, it is clear that (1 1) implies pn = 0(h4), for n > 2. 
We have thus proved the following theorem. 

THEOREM 1. Assume that a(x) and b(x) are C3, and k(x, s) is C3'4, for x0 < x, 
s < L. Then the approximations y,n n : 2, computed from Algorithm A with 0(h4) 
starting values, satisfy the relation 

Y(Xn) = Yn + h2e(xn) + 0(h4). 
Now, the extrapolation procedure can be used. Let Y(x, h) denote the approxi- 

mate solution at x with step-size h. Then, by Theorem 1, we have 

y(x) = Y(x, h) + h2e(x) + 0(h4). 

We then obtain immediately that 

( ) = I 
4Y x, 

h 
)-Y(x, h)) + 0(h4). 

Thus a better approximate value at x is obtained with fourth order accuracy. 
Now, instead of (3), let us use the three-step Adams-Moulton rule 

X +(x) dx = [9(Xn) + 19p(Xn-1) - 5(Xn-2) ? (Xn -3)] 

(14) Xn- 

19h5 
720 

together with the Euler-Maclaurin formula (4), in Eq. (2). This leads to the following 
algorithm. 
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ALGORITHM B. 
Get starting values: yo, YI, Y22 
Compute yn, for n = 3, 4,. . ., N, according to 

h 
Yn Yn- I + 24 [9(an + bnYn) + 19(an-I + bn-lYn-1) 

-5(an-2 + bn-2yn-2) + an-3 + bn-3Yn-3] 

24 [ ( 2 + k1 2 

(15) ?l9(1k10y0 + Ekn- y+ 

-5+ 19-kn- 20YO + Ekn-l,Yiy + -kn-1,n-1Yn-1! + 2 

+ (kn-3 Yo + kn-3,,iy + 2kn-3,n-3Yn-3) 

Again, let e(x) be the solution of (9) and Pn Y(Xn) - yn- h2e(xn), n 
0, 1,... , N. This time we find that pn satisfies an equation similar to (11) but for 
n > 3 and with an 0(h5) error term. Using an argument similar to that leading to 
(13), we obtain easily that p1 = P2 = 0(h4). Then this leads again to the asymptotic 
error expansion 

y(xn) = Yn + h2e(xn) + 0(h4). 

Now, from (9) we see that 

e"(xo) - - 1f'(x0). 

Suppose that 

(16) f'(xo) = 0(h). 

Then from (12) we will have e(xO + h) 0 0(h3). This in turn will lead to p1 = P2 
0(h5) if we choose 0(h5) starting values. Then the equation on pn implies that 

Pn = 0(h5), and thus the asymptotic error expansion 

Y(Xn) =Yn + h2e(xn) + 0(h5). 

By differentiating (7) we have 

(17) f'(xo) = k,(xo, x0)y(x0) + 2k,(xo, x0)y'(x0) + k(xo, x0)y"(x0). 

One sufficient condition for (16) to hold is seen to be 

(18) k(xo, x0) = k,(xo, x0) = kss(xo, x0) 0. 

THEOREM 2. Assume that a(x) and b(x) are C4, and k(x, s) is C4'5, for xo ? x, 
s < L. Then the approximations yn, n > 3, computed from Algorithm B with 0(h4) 
starting values, satisfy the relation 

Y(Xn) =yn + h2e(xn) + 0(h4). 
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If, furthermore, (16) is satisfied, then the values yn, n : 3, computed from Algorithm B 
with 0(h5) starting values, satisfy the relation 

Y(Xn) = Yn + h2e(xn) + 0(hS). 

3. Computational Examples. 
Example 1. 

0 y'x) = I- y(s) ds, y (O) = O, O < x < 1 

The exact solution is y(x) - sin x. 
Example 2. 

y'(x) = 1 + sin x-y(x) + ? sin(x-s)y(s) ds, 

y(O) = O, 0 < x <1. 

The exact solution is y(x) = x. 
For Example 1, we see that f'(x0) = 0 by (17). Both Algorithms A and B, with 

appropriate starting values, are used in computing the approximate solution. We list 
in Tables 1, 2, and 3 some of the resulting errors, before and after extrapolation. By 
error we mean 

error - exact value - approximate value 

For Example 2, the approximate solution is computed using only Algorithm A. The 
resulting errors are listed in Tables 4 and 5. The effect of extrapolation is apparent 
from these tables. 

The programs are written in FORTRAN in double precision for the IBM 370/158 
computer at the Cleveland State University. 

TABLE 1 

Example 1, Algorithm A 

x h = 0.1 h = 0.05 h = 0.025 

0.4 1.13 x 10-5 2.55 x 10-6 5.95 X 10-7 
0.6 3.50 X I0o- 8.06 x 10-6 1.92 X 10-6 
0.8 7.75 x 10-5 1.81 X 10-5 4.35 X 10-6 
1.0 1.42 X 10-4 3.35 X 10-5 8.11 X 10-6 

TABLE 2 

Example 1, Algorithm B 

x h = 0.1 h = 0.05 h = 0.025 

0.4 8.47 x 10-6 2.21 X 10-6 5.49 X 0-7 
0.6 2.92 X I0o- 7.28 x 10-6 1.81 X 10-6 
0.8 6.73 x I0-5 1.67 x 10-5 4.17 X 10-6 
1.0 1.26 X 10-4 3.15 X 10-5 7.85 x 10-6 
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TABLE 3 

Example 1, after extrapolation 

Algorithm A Algorithm B 

x h = 0.1 h = 0.05 h = 0.1 h = 0.05 

0.4 3.54 X 10-7 5.72 X 10-8 1.25 X 10-7 4.10 X 10-9 
0.6 9.28 X 10-7 1.33 X 10-7 4.46 X 10-9 1.13 x 10-8 
0.8 1.70 X 10-6 2.32 X 10-7 1.18 X 10-7 1.70 X 10-8 
1.0 2.60 X 10-6 3.46 X 10-7 2.06 X 10-7 2.07 X 10-8 

TABLE 4 

Example 2, Algorithm A 

x h = 0.1 h = 0.05 h = 0.025 

0.4 1.14 X 10-4 2.89 X i0-5 7.27 X 10-6 
0.6 2.42 X 10-4 6.11 X i0-5 1.53 x i0-5 

0.8 4.05 X 10-4 1.02 X 10-4 2.54 x i0-5 

1.0 5.93 X 10-4 1.49 X 10-4 3.72 x i0-5 

TABLE 5 

Example 2, Algorithm A, after extrapolation 

x h = 0.1 h = 0.05 

0.4 7.42 X 10-7 4.51 X 108 
0.6 6.16 X 10-7 3.76 X 108 
0.8 5.28 X 10-7 3.25 x 10-8 
1.0 4.78 X 10-7 2.97 X 10-8 
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